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Controlling transition matrix elements and relaxation in a two-electron double quantum dot
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We demonstrate theoretically that transition matrix elements between ground and first-excited singlet states
of a two-dimensional two-electron lateral double quantum dot can be controlled and changed by orders of
magnitude by varying the interdot barrier. As a result, decay arising from system-environment coupling can be
controlled. A potential ramp is identified by which the system is nonadiabatically inverted and then frozen by

insulating it against environmental decay.
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I. INTRODUCTION

Our ability to manipulate matter on a microscopic level
rests on creating transitions between eigenstates of a system
by introducing a perturbation. The resulting quantum dynam-
ics of the system and between the system and the environ-
ment is governed by transition matrix elements (TMEs). For
a given perturbation, they are inherent properties of the mi-
croscopic system under investigation and can only be
changed when the confining potential is changed. Whereas
this is very difficult in atomic and molecular physics, tools
exist in semiconductor physics by which the confining
potential can be changed.'?

Our theoretical analysis shows that a two-dimensional
(2D) two-electron lateral double quantum dot>~° (DQD) is
particularly suitable for this purpose. The TME between
ground and first-excited state, with regard to a general per-
turbation, can be controlled over orders of magnitude by ex-
ploiting the different charge correlation properties of these
two states. In the limit of an infinitely high interdot barrier,
the ground state of a highly biased DQD has a (0,2) charge
configuration, with two electrons in one dot. The first-excited
state is in a (1,1) configuration with one electron in each dot.
Due to the different charge distribution characters, the wave
functions of these two states have no overlap; therefore,
TMEs between them are zero. As a result, environmentally
induced relaxation is turned off and the population of the
two-level system is frozen. This is explicitly demonstrated
here for coupling to phonon and photon baths. When the
interdot barrier is ramped down, the (0,2) and (1,1) charge
configurations start to mix and the TMEs are switched on so
that the two-level system can be manipulated.

We identify an electric pulse that inverts and freezes the
population of the two-level system by modifying the bias and
the barrier between the two quantum dots. The capacity to
control decay over orders of magnitude is mostly of funda-
mental interest. Potential applications are discussed at the
end of the paper.

The scope of our paper is as follows. Section II shows the
time-dependent Schrodinger equation, Hamiltonian of our
system, and its spectrum. Section III states the multiconfigu-
ration time-dependent Hartree-Fock (MCTDHF) formalism,
which is used to handle the electron dynamics in our prob-
lem; the wave function in MCTDHF is expanded as a sum
over many-electron configurations, where both the expansion
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coefficients and the single-particle basis set are time
dependent.”-'% Section IV discusses the control and freezing
of transition matrix elements by dynamical manipulation of
our two-level singlet subspace. In Sec. V two potential
applications of our study are discussed.

II. HAMILTONIAN AND TWO-ELECTRON SPECTRUM

The two-electron dynamics in the DQD is described by
the Schrodinger equation in effective atomic units

2
2 H,(r;,t) + Hy(ry,ry) (W, (1)

i=1

J
i—V =H(r,,r,,n)¥V =
Py (ry,rp,0)

where r=(x,y) and the in-plane wave function is W
=W(r,,r,,t)®|S). The spin singlet state [S)=|T(1)](2)
—1(1)7(2)) is conserved throughout our analysis. The one-
electron Hamiltonian is H,=T+V(r,t), with T=-V?/2 as the
kinetic-energy operator and V(r,r) as the potential of the
DQD. Further, the two-electron Hamiltonian is H,
=1/(ry—r,)?+a’, where the parameter a arises from the
finite thickness of the 2D DQD. For the calculation of pho-
non decay below, three-dimensional (3D) bulk properties are
required. For that we consider the z direction to be confined
by a quantum well of size a, centered at z=0; the confine-
ment is strong enough that only the lowest vertical subband
is populated. The resulting 3D wave function is W(r,,r,,?)
®Z(i,22), with  Z(z,20)=¢(z)) ® p(zo) and  &(z)
=\2/a cos(mz/a).

In our analysis, we consider a GaAs DQD with an effec-
tive mass m=0.067 and a dielectric constant v=12.4. The
effective atomic units used throughout the paper are then size
in effective Bohr radius R*=9.80 nm, energy in effective
Hartree energy E*=11.85 meV, and time in effective natural
time T"=#h/E*=55.55 fs.

The lateral DQD potential V(r,t)=V,(r,1)+V,(r,1)
+V,(r,t) consists of the left dot, right dot, and central barrier
contributions  Vy(r,1)=W(t)U/(r)(i=I,r,b) with Gaussian
shape Ui(r)=exp[—(r—d,-)2/Ai2], width A;, and depth W,(z).
The left dot, right dot, and barrier are centered at d,
=(-d,0), d,=(+d,0), and d,=(0,0), respectively, with 2d as
the distance among the dots. In our analysis, W.(1)=W
+€(r) and W, (1) are biased with time, while W;(r)=W is held
constant. The potential detuning between the two dots is
e(r)=W,(t)— W. Notice that the bias is applied to the right dot
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FIG. 1. (Color online) DQD two-electron energy spectrum E; as

a function of the detuning € between the dots [W,=1.5, panel (a)]

and as a function of the interdot barrier W, [e=-2, panel (b)]. The

spectrum (singlets in blue and triplets in red) is shown with refer-

ence to the lowest triplet |7). Only the lowest five (three) singlets
(triplets) are shown with the lowest three singlets explicitly labeled.

and that e=0(e<0) stands for a symmetric (asymmetric) po-
tential profile, with e=-2 for the most asymmetric profile we
use; when it is the interdot barrier that is varied, W, ranges
from O (highly coupled DQD) to 5 (highly decoupled DQD
limit). The DQD parameters A;=A,=2.5, A,=1.5, W=-5,
d=2, and a=0.5 remain fixed throughout the paper.

The size of our DQD is smaller than the size used in
GaAs DQD experiments.>~¢ This choice is driven by numeri-
cal convenience. Larger dots have a more closely spaced
spectrum and require a much finer grid resolution which is
difficult to handle numerically. However, we would like to
stress that the results derived in the following are general and
do neither depend on the size of our DQD nor the choice of
Gaussian'"'? potentials V(r,t). Calculations with somewhat
larger dots and different potentials, e.g., a harmonic
potential,'>!% have given similar results.

The parameters used here were chosen to achieve a two-
electron spectrum, see Fig. 1, qualitatively similar to the ex-
perimental spectra of such systems.’* Panel (a) shows the
spectrum as a function of € at fixed W,=1.5, while panel (b)
does the same but as a function of W, at fixed e=-2; the
energy levels are plotted with reference to the lowest triplet
|T); only the lowest five (three) singlets (triplets) are shown.
The two-electron energies E; and eigenstates |i)=|V¥;) are
obtained by diagonalizing the configuration interaction ma-
trix of Hamiltonian H in Eq. (1) with respect to the eigen-
states of H, for each related set of DQD parameters; in Fig.
1 the lowest three singlets, |1), |2), and |3) are explicitly
labeled. A basis of 50 spatially distinct one-electron orbitals
(n=100 spin orbitals), yielding 4950 two-electron configura-
tions, is sufficient to converge the first few singlet and triplet
states.

In the following the properties of the lateral DQD used in
our investigation are further specified: (i) the distance be-
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tween the dots is 2d=4~40 nm and a=0.5=5 nm. If we
define the lateral/vertical ratio as 2d/a, it amounts to 8 in our
system. (ii) The single-electron lowest energy spacing w, of
the isolated (e.g., right) dot can be inferred from 2|W,|/A,,
ranging from =~14.99 meV at W,=-5 to =17.73 meV at

W,=-T; further, the one-electron bonding and antibonding
lowest-energy spacings wgsg Of the coupled double dot is a
function of both € and W,; at, e.g., W,=1.5, such splitting is
~14.6 meV at e=—-2 and =0.89 meV at €=0. (iii) The tran-
sition energies between the two-electron states in Fig. 1(a),
which are relevant for our analysis, are for e€=0, 5|1>_‘T>
=0.0070~0.083 meV, &y 1p=0.5269~6.244 meV, and
5‘2>,|3>=0.016720.198 meV, and for e=-2=23.7 meV,
O1y-n=0.7852~9.305 meV, &) |1p=0.0582~0.690 meV,
and &) _13=0.3575~4.236 meV. As the barrier is increased
in Fig. 1(b) for e=—2, among other features, the singlet |3)
crosses with the next-excited singlet; in what follows, the
label |3) always refers to the third lowest singlet in energy at
the related DQD configuration.

III. MCTDHF AND TWO-ELECTRON DYNAMICS

Equation (1) is solved by the MCTDHF approach,’'°
which relies on the ansatz

W(ry,ryt) = > Ajljz(f)¢j1(1'1J)¢j2(l'2,f)sjl(1)sj2(2),

J1#j=1
(2)

confined here to two electrons for the sake of simplicity. The
n single-particle basis functions are characterized by a spin
s;=T,] and by an orbital part ¢;. We use restricted MCT-
DHF with n/2 different orbital basis functions; the resulting
number of configurations is (5). The antisymmetry of the
wave function W(r;,r,,?) is ensured by imposing the con-
straint A; ; =—A; ; on the expansion coefficients. Both
Ajlj2(t) and ¢;(r, 1) are time dependent and are determined by
the Dirac-Frenkel variational principle

d
(W ()i~ W (1) = HO[W (1) = 0. 3)
Performing the variation with regard to Eq. (2) yields a

set of time-dependent nonlinear coupled integrodifferential
equations for Aj jz(t) and ¢(r,1),

9 :
IEAjljz(t) = l ; 1 Hj1j21112(t)A1112(t)’ (4)
1#h=

i%@‘(r,t) =(1-P(r,1)) 2 Rj/k(l',l‘) di(r,1), (5)

k=1

where lek(l‘J)=P}zl(f)<H>1k(l’J), with le(f)=2?:1A;,~(t)Ali(f)
as the density matrix. Further, the projector is P(r,?)
=3",|pi(r,1))¢;(r,1)| and the mean field is given by

(Hyy(r,1) = E (A1) (2, 0)|[H(D)|A (1) (x0,1)), (6)
i=1

while the two-electron matrix elements are given by
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Hjljzllzz(l) = <¢jl(r1’t)¢j2(rz’f)|H(f)|¢11(1’1J)¢12(1'2J)>~
(7)
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{s;}={11,12,13, 4} In a restricted basis set, two up and two
down spin orbitals are present, with only n/2=2 distinct spa-

tial parts, that is, ¢3=¢;(13=1;) and P,=h,(|4=],). Alto-

To clarify how the MCTDHF wave function is con-  gether, the restricted basis set becomes {¢;s;}
structed, we detail the ansatz in Eq. (2) for the simplest case ={d1.P1.b1.4]}. By using the constraint
of n=4 spin orbitals, that is, {¢}={d, b, 3,4} with  A;; =—A; ;. Eq. (2) can then be expressed as

J
W(ry,15,1) = Ap()[ fy (r1,1) a1, 1) = (11, 1) by (12,0 ]T(1)1(2)
+A ;1) (1) @i (rp, O[T (1) 1(2) = [(DT(2)]
+AOL1(r,) a(ry,)T(1)[(2) = ha(ry,1) i (rp,1) [(1)T(2)]
+Ax(O[ha(r1,0) (0, 1) T(1) [ (2) = by (r1,8) (10, 1) L(1)T(2)]
+Ap(t) by(r,1) o(r2,)[ 1(1) L(2) = L(1)T(2)]
+A34(O)[ 1 (r1,0) o (1p,1) = y(ry, 1)y (0, 1) ] L(1) [ (2), (®)

where (3)=6 distinct coefficients (configurations) are
present. The first and sixth lines in Eq. (8) are triplets with
S,=1 and §,=-1, respectively, while the second and fifth
lines are singlets with doubly occupied orbitals. For Eq. (8)
to be fully antisymmetric, the third and fourth coefficients
have to be interdependent; when A ;= = A,3, the third and
fourth lines become A 4(t)[P;(r,,1)Ps(rs,1) = Phy(ry,1) P,
(rp, )T 1 (2)F | (1)7(2)], in which the upper (lower)
sign refers to a singlet (triplet with S.=0).

The singlet ground state at =0 is found via imaginary
time propagation. The only restriction imposed on the MCT-
DHF coefficients is that A it j2:—A i the interdependence of
some coefficients, like between A4 and A,z in the simple
example above, building up the fully antisymmetric ground-
state wave function comes out naturally in the imaginary
propagation of Egs. (4) and (5). After a given time of imagi-
nary propagation, only the ground state survives, yielding the
converged set of orbitals and coefficients to be used as the
initial state at £=0 in the real propagation of Egs. (4) and (5).
The real propagation yields the many-particle wave function
in Eq. (2) at any time instant. Notice that the time evolution
does not alter the spin character of the initial state since
Hamiltonian is spin independent; that is, once the propaga-
tion starts from a given singlet, the system will always re-
main in a singlet. Finally, notice that the time-dependent
configuration-interaction method is a special case of MCT-
DHF which occurs when an infinite basis set is used, that is,
P=1in Eq. (5), so that the orbitals become time independent
and only the coefficients are propagated.

IV. CONTROL OF TRANSITION MATRIX ELEMENT

Lateral DQDs are a promising medium for quantum com-
putation. In contrast to spin qubit implementations,>* where
the subspace under study is formed by the lowest singlet |1)
and triplet |T) states, our analysis focuses on the subspace

formed by the two lowest singlets, |1) and |2).

Figure 1(a) shows that it is difficult to address such a
two-level singlet subspace at e=0 because the singlet |3) is
too close. For that reason, we focus on the asymmetric limit
of e=-2. Figure 1(b) shows how the transition energies at
e=-2 evolve, when the interdot barrier W, is increased from
0 to 5.0 (59.25 meV).

The basic concept underlying the control of TMEs be-
tween ground (|1)) and first-excited (|2)) singlets of a two-
electron DQD can be understood from Figs. 2 and 3, both at
e=-2. In Fig. 2, the probability of the possible charge con-
figurations, (N;,N,), of the lowest three singlets is plotted in
panels (a)—(c) as a function of W,; Fig. 3 shows the corre-
lated (x;,x,) electron distribution |W,|?, which indicates the
charge character of the related state for the same lowest three
singlets (from left to right) at a low barrier W,=1.5 (upper
panel) and at a high barrier W,=5 (lower panel). The charge
configuration probability is determined by first integrating
|W,|> over the whole y,,y, simulation box; this yields the
two-electron probability as a function of x; and x,. From
these two-dimensional probabilities (N;,N,) is determined by
integrating over the respective x;,x, integration areas
depicted in Fig. 2(d).

Whereas for a low interdot barrier the eigenstates contain
a mix of different charge configurations for increasing W), the
eigenstates go over into pure charge configurations as seen in
Fig. 2; in the limit of an infinitely high W,, all eigenstates
take a pure charge configuration. Figure 3 clearly shows how
the lowest three singlet states acquire pure (0,2), (1,1), and
(0,2) charge characters, respectively, as one moves from low
to high interdot barrier; the very small (0,2) component re-
maining in |2) disappears at a higher W,. In such highly
asymmetric DQD, singlets with (2,0) character can only oc-
cur at very high excitation energies.

As two eigenstates with different two-electron charge
configurations are in disjoint parts of the simulation volume,
their overlap, and hence their product approach zero, e.g.,
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FIG. 2. (Color online) [(a)—(c)] Probability of two-electron
charge configurations, (N;,N,), for the lowest three singlets as a
function of the interdot barrier W, (d) x;,x, integration areas for
the various charge configurations; a square simulation box is em-
ployed with L=10 and N=64 points per dimension. In panels (a)
and (c) [panel (b)] the dominant charge character is (0,2) [(1,1)],
while (2,0) has always the smallest contribution for these three
singlets.
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Wi(r;,r)W,(r;,r,) =0 for all r; and r,. Therefore, the
TME with respect to a general one- or two-electron operator
O vanishes, 0,,=(1|0|2)=0. In this limit, transitions be-
tween these two states are disabled, and the first-excited sin-
glet state is preserved against environmentally induced de-
cay. Note that because all eigenstates are in a pure charge
configuration at high W,, all transition channels between |1)
and |2) are suppressed, including higher-order transitions
taking place via intermediate excited states. When W), is de-
creased, the (0,2) and (1,1) configurations in |1) and |2) start
to mix, and the TME o) 1» 1s switched on. It is worth men-
tioning that such vanishing of the TME is of fundamental
nature in two- or few-electron DQDs, and it is independent
of the specific choice of the single-particle confining
potential.

A. Freezing of the two-level singlet subspace

Freezing the population in the first-excited state by
switching off environmentally induced decay is demon-
strated in Fig. 4, where phonon (7,onon=1/T") and spontane-
ous photon (7ypn=1/7) emission times from [2) to |1) are
plotted as a function of W, for the highly biased DQD with
e=-2. Both photon and phonon interactions take place in the
THz frequency regime. For the phonon emission rates, we
take into account deformation acoustic phonons'>!® in polar
zinc-blende structures; the influence of piezoelectric acoustic
phonons and higher energetic optical phonons were found to
be 3 orders of magnitude smaller, and therewith negligible in
our system. Further, we assume that no excitons and holes
exist so that decay by optical-interband transitions can be
excluded.

FIG. 3. (Color online) Two-
electron eigenstates |1), |2), and
|3) (from left to right) at e=-2;
probability |W,|%, integrated over

R ¥1,¥,, and plotted as a function of
X (R) X1,X,. The correlated electron dis-
| l*’3 > tribution shows the two-electron

charge character of the lowest
three singlets at low (upper pan-
els, for W,=1.5) and high (bottom
panels, for W,=5.0) interdot
barriers.
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FIG. 4. (Color online) Phonon relaxation time 7yhonon (red,
lower curve) and spontaneous photon relaxation time Tphoton (blue,
upper curve) from state |2) to state |1) as a function of the interdot
barrier W,,. Inset: energy splitting AE,; versus W,.

The phonon emission rate is given by!’-20

r=2—772

3 6@ PMQP W), ()
Q

> Fiq)

i=1,2

where Q=(q,q,) and q=(q,,q,). The argument of the delta
function is W,,=(|AE,,|-#%v|Q|), while the coupling term is

Q
M(Q)=|Q|kg?/(2upV), with g=8.6 eV as the GaAs poten-
tial constant and v=4.72X10° m/s as the longitudinal
sound velocity; further, p=5.31X 10> kg/m> and V are the
crystal electronic density and volume, respectively. The in-
plane form factor is

F(zll)((I) =<\I’2(r1,r2)|eiq'ri|q’1(1’1,1'2)>, (10)

while the perpendicular form factor is

G(gq,) =(¢(2)|e' | p(2)). (11)

The spontaneous photon emission rate in the host material
with refraction index 7=\'v is given by?!

AE§1|,U~21|2
=p——, 12
Y=n 3’77607146‘3 ( )

where ¢, is the free space permittivity, ¢ is the vacuum light
speed, and the dipole moment is
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par = e(Ws(ry, 1)) 2 x|V (r),r)). (13)
=12

The dipole matrix elements in y and z are zero due to sym-
metry reasons.

Figure 4 shows that both emission times increase by about
3 orders of magnitude when going from W,=0 to W,=5 so
that the respective relaxation rates will completely vanish in
the limit of an infinitely high interdot barrier. In the param-
eter range investigated here, decay can be controlled from
the us to the ms time scales; when the barrier is further
increased, population can be frozen over time scales relevant
for the macroscopic world. Since the W, variation in the
level splitting AE,; is small (see inset), the change in decay
rates from Egs. (9) and (12) is mainly due to the decreasing
overlap between states |1) and |2), as discussed above. The
resonant photon emission wavelength is 2wfic/AE,,
~ 130 wm, while the acoustic phonon emission wavelength
is 27hv/AE,; =2 nm, the latter being smaller than both lat-
eral and vertical sizes of the DQD. Both wavelengths yield a
frequency of =15 THz.

Note that control of the TMEs in a two-electron DQD
comes from controlling the tunnelling between the dots,
which is a single-electron property. Therefore, in principle,
the TMEs could also be controlled between states with (1,0)
and (0,1) charge configurations in a one-electron DQD.
However, in practice, it is much more difficult to address and
manipulate pure (1,0) and (0,1) configurations since they re-
main superpositions of bonding and antibonding states at any
W,. In the following, we show that manipulation of a two-
electron DQD is, on the other hand, straightforward.

B. Dynamical manipulation of the two-level singlet subspace

Figure 5 demonstrates how the inversion of the two-level
system is initially induced, and then how this two-singlet
subspace is preserved against decay. The manipulation starts
from the ground state |1) of the strongly coupled, highly
biased DQD with e=-2 and W,=1.5. First, the population is
inverted by changing the bias from e=-2 to e=-0.2 and then
back to e=-2 (at W,=1.5), as depicted in panel (a). We use
a nonadiabatic technique to invert the system from the
ground state |1) to the excited singlet |2). The avoided cross-
ing between |1) and |2) in Fig. 1(a) is ran through fast
enough to cause a nonadiabatic population transfer. In order
to invert the system, the ramp up and the ramp down have to
be chosen in a way that the population transfer during the
up-down stages adds coherently, and completely invert the
system. After inversion the first-excited state |2) is frozen by
ramping up the interdot barrier from W,=1.5 to W,=5 (at
€=-2), as shown in panel (b). A one-dimensional (1D) sche-
matic of the DQD potential profile is plotted in the insets for
selected positions along the pulse profile. The pulse avoids
the symmetric potential, =0, where state |2> becomes
quasidegenerate with state |3).

In panel (c) the time evolution of the population P; of the
four lowest singlets is plotted, as driven by the pulse shape in
panels (a) and (b); the time axis in (a) and (b) is the same as
in (c). Note that our MCTDHF analysis is converged and
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FIG. 5. (Color online) [(a) and (b)] Three-stage pulse profile
driving the dynamics: (a) € is increased and decreased back to its
initial e=-2 value at W,=1.5 without reaching €=0 and (b) W, is
increased from 1.5 to 5.0 at e=-2. The insets show a 1D view of
the DQD potential at the turning points of the pulse, indicated by
arrows. (c) Time evolution of the occupation probabilities of the
lowest four singlets, P;_;_4, as driven by the pulse in [(a) and (b)].
The x axis in (a) and (b) is the same as in (c).

therefore accounts for all singlet states involved in the dy-
namics. In dependence of the ramp parameters, many more
than four states could be populated; for the parameters cho-
sen here on purpose, however, the lowest two singlets are
sufficient. The next two excited states are shown in the plot
to demonstrate that there is very little leakage (below 107%)
from the lowest two-level Hilbert subspace to higher singlet
states.

During ramping of the bias (0=r=110), the system
crosses the avoided crossing between singlets |1) and |2)
twice [check Fig. 1(a)]. This is where most of the population
transfer takes place.” The ramp parameters were chosen to
invert the system; the final population of state |2) reaches
P»,=0.999 and could be further enhanced via optimum con-
trol theory.?? The population exchange mainly depends on
the phase acquired by the system between the two (avoided)
crossings.”? By small changes in the ramp slopes or ramp
times, a wave function consisting of arbitrary mixtures of
ground and first-excited state can be addressed.

Following our pulse, decay of state |2) is then switched
off by ramping up the barrier (110=¢=220), where the
splitting AE,, follows a smooth behavior [check Fig. 1(b) or
inset in Fig. 4]; it changes from =0.75 to =0.9 from the low
barrier to the high barrier limit. The smallest energy splitting
determines the adiabatic time, r>2/AE,;=~8.5, in which
the barrier can be ramped up and down with only minor
population losses to other eigenstates. Our time interval
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(110) is chosen so that less than 107 of state |2) is lost to
other states. Indeed, we see in Fig. 5(c) that the population of
state |2) remains unchanged as W, is increased. This shows
that freezing of the quantum state is possible without chang-
ing its nature by leakage to other bound states. The time for
addressing and freezing the system in Fig. 5 is 220
(=12 ps). Over this time, phonon and spontaneous photon
decays (us to ms in Fig. 4) are negligible.

V. DISCUSSION AND CONCLUSION

When the interdot barrier in a two-electron DQD is low,
the population of ground and first-excited singlet states can
be controlled by time-dependent biasing of the two dots. The
population can be insulated against environmentally induced
decay by ramping up the interdot barrier, which determines
the magnitude of the tunnelling between the dots. In the limit
of an infinitely high barrier, single-electron tunnelling is sup-
pressed and the bound states of the two-electron DQD take
pure charge configurations. As a result, there remains no
overlap between ground and first-excited state so that all one
and two-electron TMEs and, therewith, coupling to the envi-
ronment, vanishes.

We believe that the ability to control TMEs and relaxation
is of fundamental importance. An immediate application of
this idea to the areas of quantum computation and quantum
optics is not trivial and is impeded by obstacles. We would
like to discuss some of these difficulties.

First, the two-level singlet subspace investigated here
could be used for encoding a two-electron charge>?* qubit.
Coupling to the environment is a main obstacle in quantum
computation.”> However, freezing the decay allows us only
to control the population of such two-level system, but con-
trol over dephasing is very limited. Although there is a
dephasing component that accompanies decay and that can
be eliminated by switching it off, usually the pure dephasing
component is dominant.?® Pure dephasing depends on matrix

elements of the type (1|0|1) and (2|0|2), which do not de-
pend on W, and cannot be controlled. These matrix elements
cause dephasing by randomly changing the energy spacing of
the two-level system, AE,,. An estimation of the pure
dephasing time for our system, following Ref. 26, lies in the
ns range. This is orders of magnitude faster than the fastest
phonon and spontaneous photon decay times in Fig. 4.
Therefore, only in combination with control over pure pho-
non dephasing, our method can be used to create a
decoherence-free subspace?’ for quantum computation. Re-
cently, a couple of methods for the control of phonon-
induced dephasing were suggested.?8-30

Second, control over relaxation opens the opportunity to
control single-photon emission on demand.’! However, for
the DQD parameters used here, single-photon THz emission
is difficult to observe, as relaxation by phonon emission is
more efficient by about 1 order of magnitude in Fig. 4, at any
interdot barrier. But there exist several ways to enhance pho-
ton emission. For example, AE,; can be increased: (i) by
increasing the biasing between the two dots to e<<-2 in Fig.
1(a) and (ii) by replacing the first-excited (1,1) state of the
two-level subspace with the lowest-lying singlet state with
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(2,0) charge character, at e=—2. All the states lying below
such highly energetic (2,0) states are of (1,1) or (0,2) char-
acter so that TMEs to these states can be controlled by the
interdot barrier. This would give an increase in AE,; by a

PHYSICAL REVIEW B 79, 155322 (2009)

factor of 2-3; from Eq. (12) one finds that an increase in
AE,; by such amount would already make 7ponon a0d Tphoton
comparable. Alternatively, one could also use phonon cavi-
ties to suppress phonon emission.”

*carlos.destefani @uottawa.ca
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